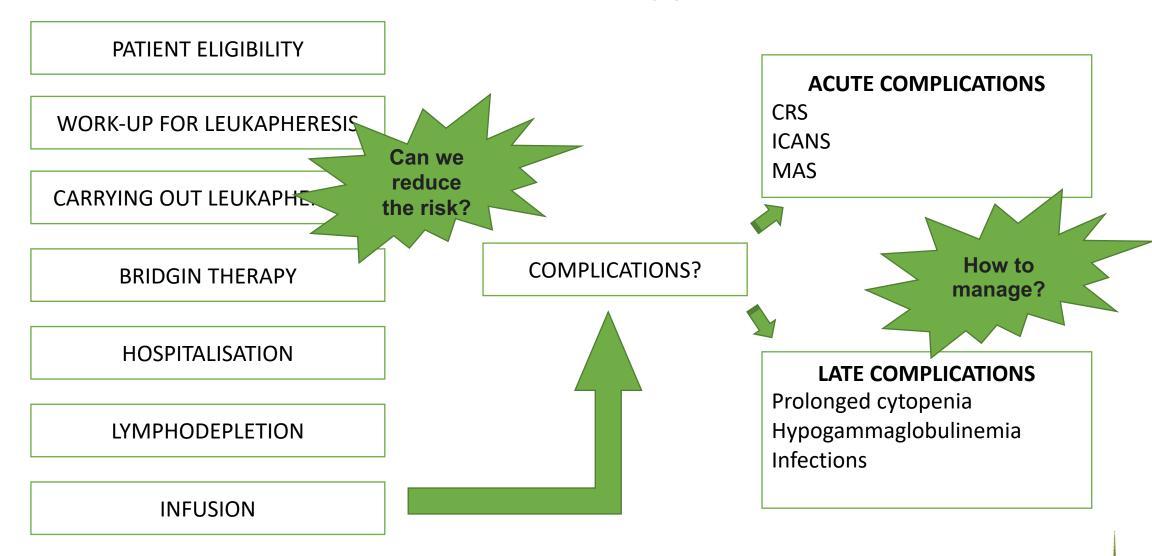
GESTIONE DELLA TOSSICITÀ ASSOCIATA ALLE CAR-T

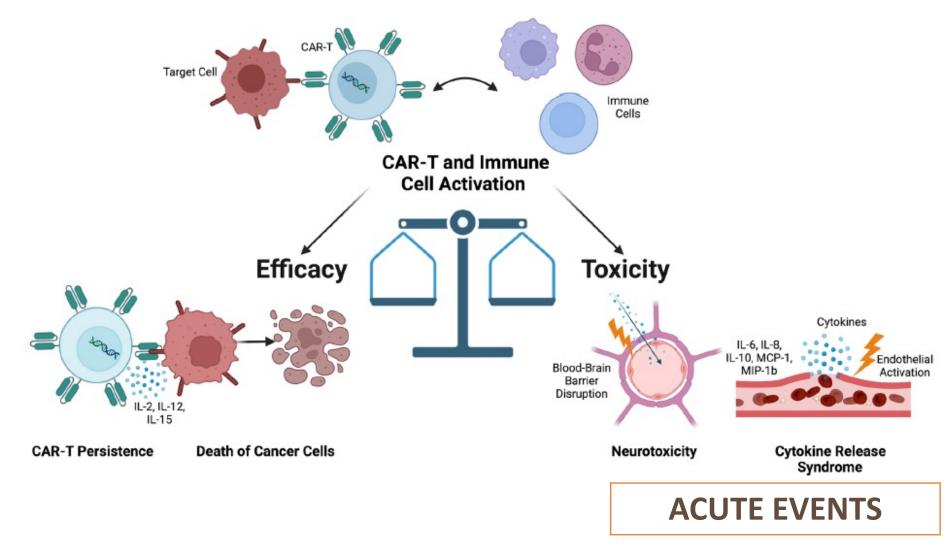
Francesca Gay Università di Torino LE NUOVE FRONTIERE
DELL'IMMUNOTERAPIA
PER LA CURA DEL
MIELOMA
MULTIPLO


TORINO 3-4 MARZO **2023**

dalla teoria alla pratica

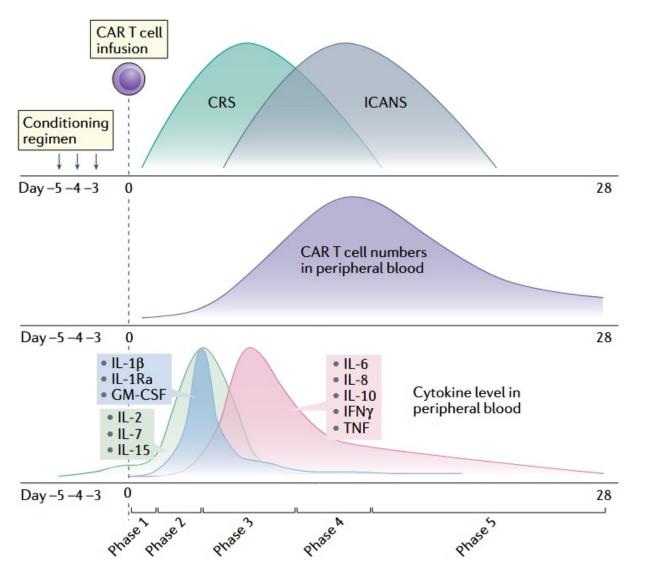
Disclosures of Francesca Gay

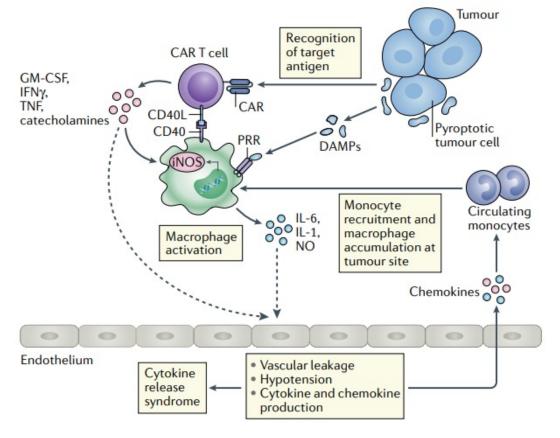
Company name	Research support	Employee	Consultant	Stockholder	Speakers bureau	Advisory board	Other
Janseen						х	x
Amgen						x	x
Pfizer						х	
BMS/Celgene						х	х
Roche						x	
Abbvie						х	x
Oncopeptides						х	
Adaptive						х	
Sanofi						х	x
Takeda						х	x
GSK						x	x


CAR-T Cell Therapy

CRS: cytokine release syndrome; ICANS: immune effector cell-associated neurotoxicity syndrome; CAR: chimeric antigen receptor;; MAS: macrophage activation syndrome

Hayden et al., Annals of Oncology 2022

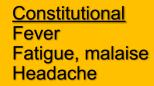

CAR-T Cell Therapy: a balance between EFFICACY and TOXICITY



CRS: cytokine release syndrome; ICANS: immune effector cell-associated neurotoxicity syndrome; CAR: chimeric antigen receptor;

Chohan et al., Current Hematologic Malignancy Reports, 2022

PATHOPHYSIOLOGY OF CAR-T RELATED ACUTE TOXICITIES



Massive T cell activation and expansion, involving other immune cells

CRS: cytokine release syndrome; ICANS: immune effector cell-associated neurotoxicity syndrome; CAR: chimeric antigen receptor; IFNy: interferon-y (IFNy); GM-CSF: granulocyte—macrophage colony-stimulating factor; TNF: tumour necrosis factor; DAMPs: damage-associated molecular patterns; NO: nitric oxide

Morris et al., Nature Reviews Immunology 2022

SIGN AND SYMPTOMS OF CRS

Cardiovascular Sinus tachycardia Hypotension Arrhythmias

Renal ↑ Serum creatinine Renal insufficiency TLS

Gastrointestinal

Nausea Vomiting Diarrhea

Hepatic

Transaminitis Hyperbilirubinemia

Hematologic

Anemia Thrombocytopenia

Neutropenia

Musculoskeletal

个 CPK Myalgia Weakness

CRS: cytokine release syndrome; TLS: tumor lysis sindrome; CPK: creatine phosphokinase

Brudno et al., Blood Reviews, 2019

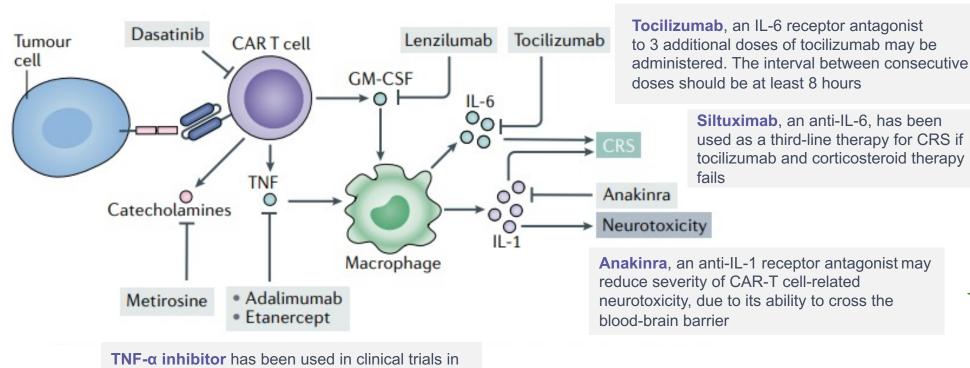
ASTCT Consensus Grading for CRS

Parameter	Grade 1	Grade 2	Grade 3	Grade 4
Fever	≥ 38°C	≥ 38°C	≥ 38°C	≥ 38°C
With hypotension	None	Not requiring vasopressors	Requiring a vasopressor with or without vasopressin	Requiring multiple vasopressors (excluding vasopressin)
And/or hypoxia	None	Requiring low-flow nasal cannula or blow-by	Requiring high-flow nasal cannula, facemask, non- rebreather mask, or Venturi mask	Requiring positive pressure (eg, CPAP, BiPAP, intubation and mechanical ventilation)

CPAP: continuous airway pressure; ;BiPAP: bilevel positive airway pressure

Lee et al., ASTCT Consensus Grading, Biol Bone Marrow Transplant, 2019 Apr;25(4):625-638

SUPPORTIVE CARE AND MONITORING STRATEGIES


- Baseline and routine monitoring of CRP, LDH, ferritin, electrolytes, uric acid, kidney / liver / coagulation function, triglycerides, NT-proBNP
- Consider allopurinol for high disease burden, aggressive hydration and rasburicase for confirmed TLS
- Acetaminophen and/or cooling blankets for high fevers
- Vital sign monitoring every 2–4 hours in inpatient
- Cardiac monitoring for tachycardia or hypotension; judicious use of IV fluids to balance insensible losses; aggressive electrolyte repletion; consider early transition to vasopressors for hypotension to avoid worsening capillary leak due to fluid overload;
- ECG and echocardiogram for patients with persistent tachycardia or hypotension requiring vasopressors; Standard anti-arrhythmic therapy for arrythmias; caution use of beta blockers in patients with hypotension
- Continuous pulse oximetry if changes in respiratory status; Chest x-ray and/or chest CT to evaluate new hypoxia

CRP: C-reactive protein, LDH: lactate dehydrogemase; NT-proBNP: TLS: tumor lysis syndrome

Adapted from 2021 ASCO Educational Book

REPRESENTATION OF CURRENT AND POTENTIAL THERAPEUTIC INTERVENTIONS FOR CRS

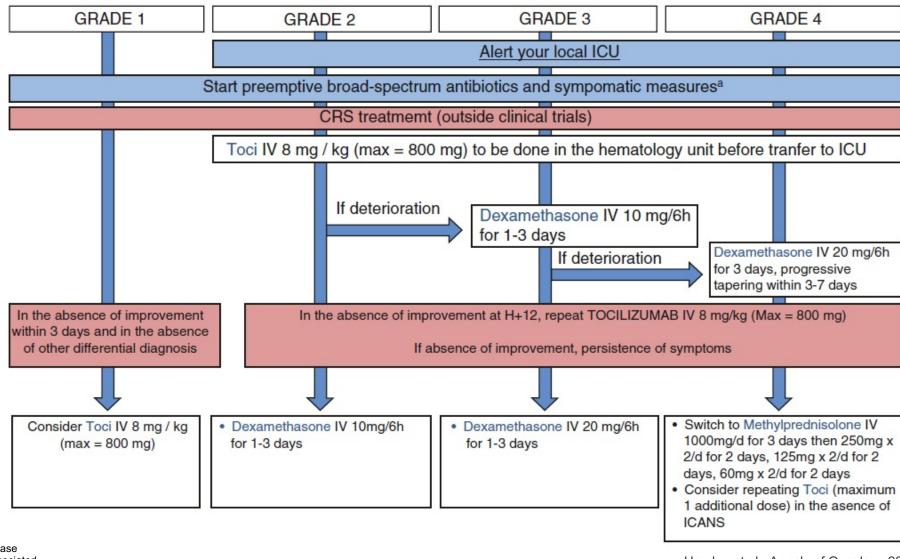
Steroids

TNF-\alpha inhibitor has been used in clinical trials in patients who are not responsive to tocilizumab and in whom TNF- α levels are elevated

Ruxolitinib

Ibrutinib

Future role in management of CRS?


Methylprednisolone for CRS refractory to tocilizumab

Administration: 1–2 mg/kg IV every 12 h

Morris et al., Nature Reviews Immunology 2022

Inhibition of cytokine production

ALGORITHM FOR MANAGEMENT OF CRS

ICU: intensive care unit; CRS: cytokine release syndrome; ICANS: immune effector cell-associated neurotoxicity syndrome; CAR: chimeric antigen receptor

Hayden et al., Annals of Oncology 2022

CRS OCCURRENCE IN ANTI-BCMA CAR T-CELLS

Event	Idecabtagene Vicleucel (KarMMa trial) N=140	Ciltacabtagene Autoleucel (CARTITUDE-1 Trial) N=97	Ciltacabtagene Autoleucel (CARTITUDE-2 Trial – Cohort A) N=20	Ciltacabtagene Autoleucel (CARTITUDE-2 Trial – Cohort B) N=19
CRS event, n (%) Any grade Grade ≥ 3	107 (84) 7 (5)	92 (95) 5 (4)	17 (85) 2 (10)	16 (84) 1 (5)
Median time to onset, days (range)	1 (1–12)	7 (1-12)	7 (5-9)	8 (5-11)
Median duration, days (range)	5 (1–63)	4 (1-97)	3.5 (2-11)	3.5 (1-7)
AE management, n (%) - Tocilizumab - Corticosteroids - Anakinra - Siltuximab	67 (52) 19 (15) 2 (2) 1 (< 1)	67 (69) 21 (22) 18 (19)	14 (70) 6 (30) 1 (5)	11 (63) - - -

AE: adverse events

CRS: cytokine release syndrome;

Munshi, NEJM 2021; Berdeja NEJM 2021, Martin et al., JCO 2023; Agha et al., A8013, JCO 2021; Agha et al., S185 EHA 2022

RISK FACTORS FOR CRS

High Tumor burden (B2M, BMPCs)

Intensity of chemotherapy (lymphodepletion)

CAR-T cell dose

Concurrent infection

CRS: cytokine release syndrome; CAR: chimeric antigen receptor B2M: Beta-2- macroglobulin BMPCs: bone marrow plasma cells

Hay K.A. et al.., Br J Haematol. 2018; Yan et al, Frontiers 2021

CAR T-ASSOCIATED HEMOPHAGOCYTIC LYMPHOHISTIOCYTOSIS (HLH)

In case of persistent fever despite tocilizumab with...

Manifestations of carHLH

Hyperferritinemia

Elevated LDH

Hyperbilirubinemia

Hypofibrinogenemia

Coagulopathy

Hypertriglyceridemia

Hemopaghocytotis

In case of neurological involvement, consider intrathecal chemotherapy...

CRS/MAS

Dexamethasone i.v.: 10-20 mg × 4/day Anakinra s.c. or i.v. 100 mg × 2-4/day, (paediatric doses are often higher)

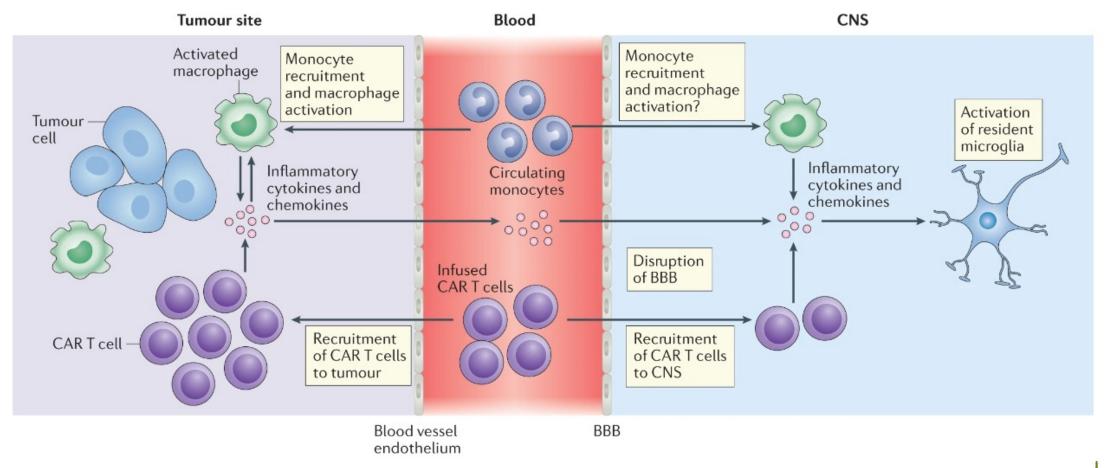
Evaluation at 24-48 h

- Absence of clinical improvement
- Increase in serum ferritin level
- Switch to methylprednisolone i.v. 1000 mg/day for 3 days then 250 mg × 2/day for 2 days, 125 mg × 2/day for 2 days, 60 mg × 2/day for 2 days
- Anakinra s.c. or i.v. 100 mg x 2-4/day

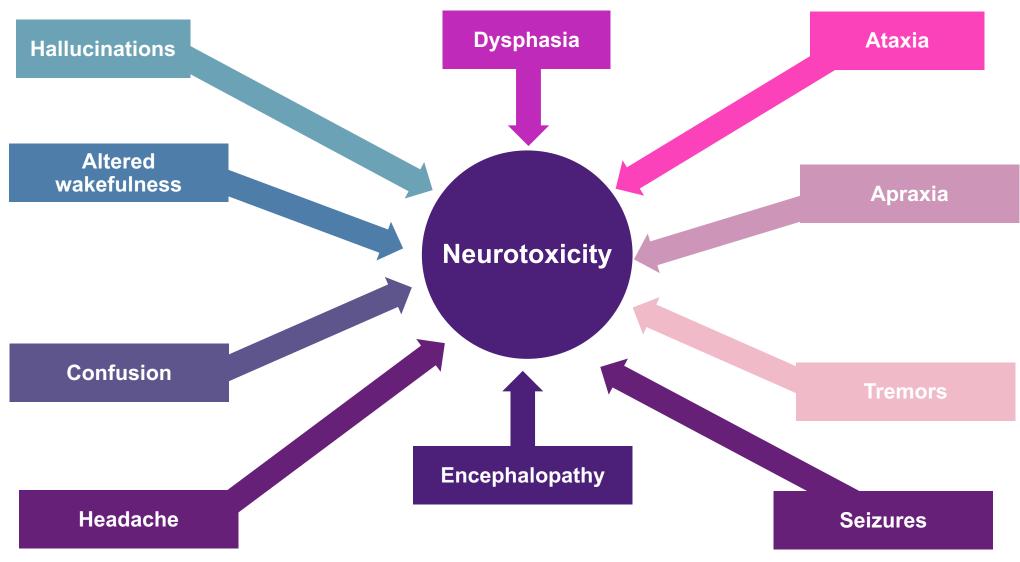
Evaluation at 24-48 h

- Deterioration
- Increase in serum ferritin level
- Consider etoposide: 75 mg/m² i.v. at day 1 to repeat at day 4 and day 7 if needed

паучен ега


Hayden et al., Annals of Oncology 2022

PATHOPHYSIOLOGY OF CAR-T RELATED NEUROTOXICITY


A disorder characterized by a pathologic process involving the central nervous system following any immune therapy that results in the activation or engagement of endogenous or infused T cells and/or other immune effector cells.

CNS: central nervous system; BBB: blood brain barrier

Morris et al., Nature Reviews Immunology 2022

SIGN AND SYMPTOMS OF ICANS

IMMUNE EFFECTOR CELL-ASSOCIATED ENCEPHALOPATHY (ICE) SCORE TO GRADE COGNITIVE FUNCTION

Domain	Definition	Points (max 10)
Orientation	Orientation to: year, month, city, hospital	4 total (1 point for each item)
Naming	Ability to name 3 objects (eg, point to clock, pen, button)	3 total (1 point for each item)
Following commands	Ability to follow simple commands (eg, "Show me 2 fingers" or "Close your eyes and stick out your tongue")	1
Writing	Ability to write a standard sentence (eg, "Our national bird is the bald eagle")	1
Attention	Ability to count backwards from 100 by 10	1

Lee DW et al. Biol Blood Marrow Transplant. 2019;25:625-638

ASTCT Consensus Grading for ICANS

ICANS Domain	Grade 1	Grade 2	Grade 3	Grade 4
ICE score	7-9	3-6	0-2	0 (unarousable and unable to perform ICE)
Depressed level of consciousness	Awakens spontaneously	Awakens to voice	Awakens only to tactile stimulus	Unarousable or requires vigorous/repetitive tactile stimuli to arouse. Stupor or coma
Seizure	N/A	N/A	Any clinical seizure focal or generalized that resolves rapidly or nonconvulsive seizures on EEG that resolve with intervention	Life-threatening prolonged seizure (>5 min); or repetitive clinical or electrical seizures without return to baseline in between
Motor findings	N/A	N/A	N/A	Deep focal motor weakness (eg, hemiparesis or paraparesis)
Elevated ICP / cerebral edema	N/A	N/A	Focal/local edema on neuroimaging	Diffuse cerebral edema on neuroimaging; decerebrate or decorticate posturing; or cranial nerve VI palsy; or papilledema; or Cushing's triad

ICP, intracranial pressure; N/A, not applicable. Lee DW et al. *Biol Blood Marrow Transplant*. 2019;25:625-638.

ICANS OCCURRENCE IN ANTI-BCMA CAR T-CELLS

Event	Idecabtagene Vicleucel (KarMMa trial) N=140	Ciltacabtagene Autoleucel (CARTITUDE-1 Trial) N=97	Ciltacabtagene Autoleucel (CARTITUDE-2 Trial – Cohort A) N=20	Ciltacabtagene Autoleucel (CARTITUDE-2 Trial – Cohort B) N=19
ICANS event, n (%) Any grade Grade ≥ 3	23 (18) 4 (3)	16 (17) 2 (2)	3 (15) 0	1 0
Median time to onset, days (range)	2 (1–10)	8 (IQR 6-8)	8 (7-10)	11
Median duration, days (range)	3 (1–26)	4 (IQR 3-6.5)	1 (1-2)	4
AE management, n (%) - Corticosteroids - Tocilizumab - Anakinra	10 (8) 3 (2) 1 (< 1)	9 (9) 4 (4) 3 (3)	- - -	- - -

AE: adverse events

Munshi, NEJM 2021; Berdeja NEJM 2021, Martin et al., JCO 2023; Agha et al., A8013, JCO 2021; Agha et al., S185 EHA 2022

RISK FACTORS FOR ICANS

CRS

Pre-existing neurologic comorbidities

High disease burden

High number of administered CAR T cells ad high peak of CAR T-cell expansion

Elevated LDH, thrombocytopenia and endothelial activation before CAR T-cell treatment

Elevated ferritin concentration <72 h after CAR T-cell administration

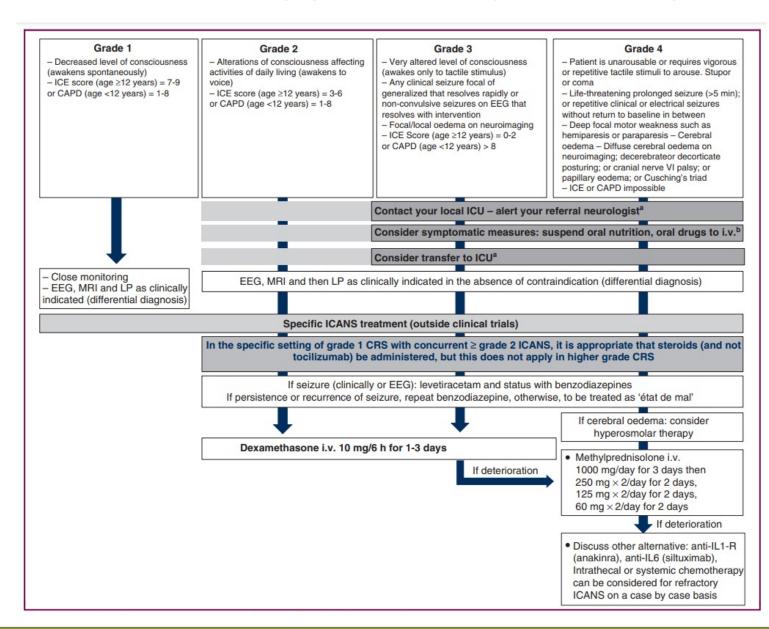
CAR-design: CD28 costimulatory domain

Lymphodepleting therapy with fludarabine and cyclophosphamide

ALL as underlying disease

...High fever (≥38.9) and haemodynamic instability within 36h of CAR-T infusion (early CRS) predicts for sever ICANS!

CRS: cytokine release syndrome; ICANS: immune effector cell-associated neurotoxicity syndrome; CAR: chimeric antigen receptor; ALL: acute lymphoblastic


Berdeja et al, CARTITUDE-1, Lancet 2021; Gust et al, Cancer Discor. 2019

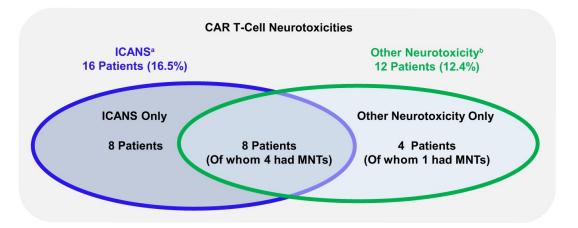
SUPPORTIVE CARE AND MONITORING STRATEGIES

- Baseline neurologic exam, ICE, brain MRI
- Consider **prophylactic anti-epileptic medications** (levetiracetam), to be continued after discharge based on patient's risk to develop late neurologic-effects
- Serial ICE score at least daily, more frequently if NT present
- Consider **consultation with a neurologist** if ICANS present
- MRI brain to evaluate moderate to severe neurotoxicity (if feasible)
- Lumbar puncture to rule out infectious etiologies of altered mental status
- **EEG** if occult seizures suspected
- Consider prophylactic antiepileptic drugs (levetiracetam)



ALGORITHM FOR MANAGEMENT OF ICANS

GRADE	TREATMENT
1	Levetiracetam (prophylaxis)
2	Steroids (dexamethasone)
3	Steroids (dexamethasone) ICU critical care
4	High dose steroids (methylprednisolone) ICU critical care


Hayden et al., Annals of Oncology 2022,

OTHER NEUROTIXICITIES AFTER CILTA-CEL INFUSION

Overall, 21 patients (21%) in CARTITUDE-1 experienced any grade neurotoxicity, including immune effector cell—associated neurotoxicity syndrome and other neurotoxicity (12% g ≥3).

At 2-years follow-up, 6/97 had Parkinson-like symptoms (3 still alive)

Other Neurotoxicity	N (%)
Movement and neurocognitive treatment-emergent adverse events (MNTs)	6 (5)
Facial paralysis	1 (1)
Neurotoxicity	1 (1)
Concentration impairment	1 (1)
Diplopia	1 (1)
Cranial nerve palsy	1 (1)
Sensory loss, ataxia, peripheral motor neuropathy and peripheral sensory neuropathy	1 (1)
Altered mental status nystagmus	1 (1)

Cohen et al., Blood Cancer Journal 2022; Martin JCO 2023

MOVEMENT AND NEUROCOGNITIVE TREATMENT-EMERGENT ADVERSE EVENTS (MNTs)

Movement disorder	Ataxia, cogwheel rigidity, dyskinesia, dysgraphia, dysmetria, gait disturbance, hand-eye coordination impaired, bradykinesia, micrography, myoclonus
Cognitive impairment	Amnesia, apraxia, bradyphrenia, confusional state, depressed level of consciousness, disturbance in attention, encephalopathy, psychomotor retardation
Personality changes	Flat affect, reduced facial expression

- Although the clinical presentation of MNTs overlaps with Parkinson's disease, neuropathology findings in the two patients with MNTs in CARTITUDE-1 for whom autopsies were available showed intact substantia nigra and a negative dopamine uptake scan in one patient and lack of response to treatment with carbidopa/levodopa in both patients;
- late onset (after a period of recovery from CRS and/or ICANS);
- insidious onset (normal to near ICE)
- generally non-responsive to steroids;
- often progressive;
- longer duration than ICANS.

Risk factors for MNTs

High tumor burden

Grade ≥2 CRS or

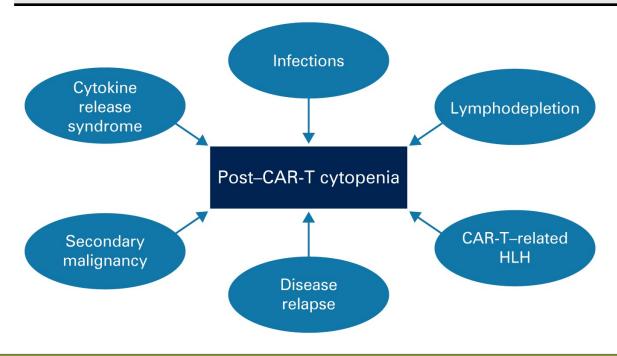
Any grade ICANS

High CAR T-cell expansion/persistence

Strategies program to monitor and manage patients with MNTs

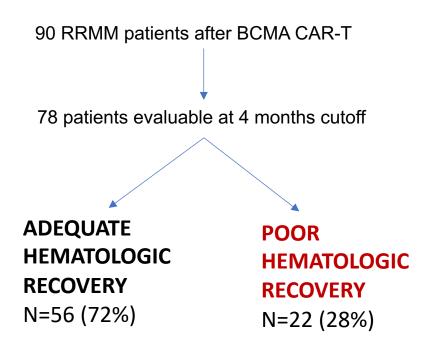
- Enhanced bridging therapy to reduce baseline tumor burden
- Early aggressive treatment of CRS and ICANS,
- Handwriting assessments for early symptom detection
- Extended monitoring/reporting time for neurotoxicity beyond 100 days post-infusion.

Cohen et al., Blood Cancer Journal 2022



CYTOPENIAS IN ANTI-BCMA CAR T-CELLS

CYTOPENIAS (G≥3)	KarMMa	CARTITUDE-1
Anemia	60%	68%
Thrombocytopenia	52%	60%
Neutropenia	90%	95%
Thrombocytopenia > 1 month	48%	25%
Neutropenia > 1 month	41%	10%


Median time to recovery from grade ≥3 cytopenias after ide-cel and cilta-cel exposure was 1-4 months

→ LONG TERM PATHOGENESIS IS POORLY UNDERSTOOD

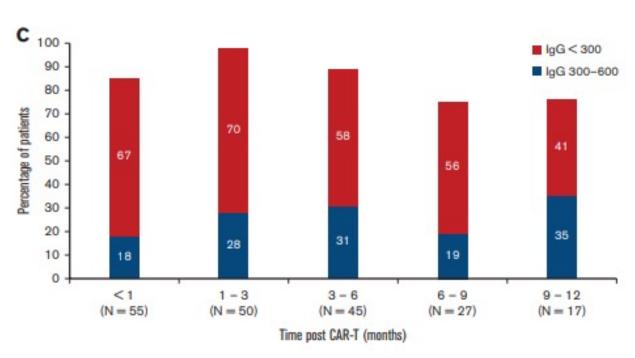
Munshi et al, NEJM 2021; Berdeja et al, Lancet 2021

CHARACTERIZATION OF PROLONGED CYTOPENIA

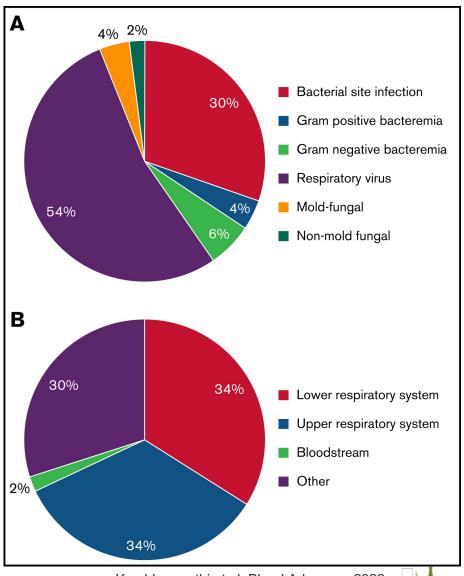
- Older age
- Higher number of prior lines therapy
- Prior of ≥1 ASCT is significantly correlated with poor hematologic recovery

Reduced bone marrow reserve due to age and/or treatment-related toxicity may contribute to the decline of hematopoietic function by an unknown mechanism

Oral Abstract 249 ASH 2022

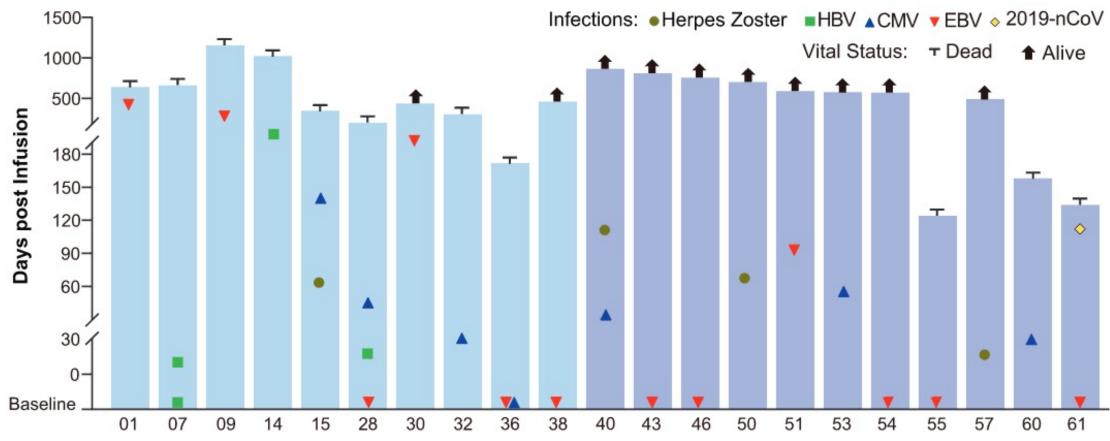

POSSIBLE CLASSIFICATION AND MANAGEMENT OF POST-CAR-T CYTOPENIAS

Timeline	Very Early	Early	Late
Time	Up to 30 Days	Up to 90 days	> 90 days
Causes	Lymphodepleting regimens CRS	Delayed effects of CRS	Multiple factors
Interventions	 Tocilizumab/dexamethasone Transfusion support (Empiric) Antibiotic prophylaxis 	 Possible role for anti-inflammatory agents G-CSF TPO agonists Transfusion support 	 - G-CSF - TPO agonists - Transfusion support - Consider bone marrow examination (MDS?) - Immunomodulatory therapy - Autologous stem cell rescue


CRS: cytokine release syndrome; G-CSF: granulocyte cytokine stimulating factor; TPO: thrombopoietin; MDS: myelodysplasticc syndrome

Sharma et al, Cancers 2022

INFECTIONS AND HYPOGAMMAGLOBULINEMIA



58% (32/55) patients received at least 1 dose of intravenous immunoglobulin (IVIG) within 12 months after CAR-T

Kambhampathi et al, Blood Advances 2022

VIRAL REACTIVATION IN ANTI-BCMA CAR T-CELLS

Chinese study of 61 pts:

Patient Number

-10 viral DNA replication events recorded before infusion

-18 viral infection/reactivation events in 15 patients after infusion, including

4 EBV, 6 CMV, 3 HBV, 4 VZV, and 1 COVID-19

HBV: hepatitis B virus; CMV: cytomegalovirus;

EBV: Epstein-Barr virus

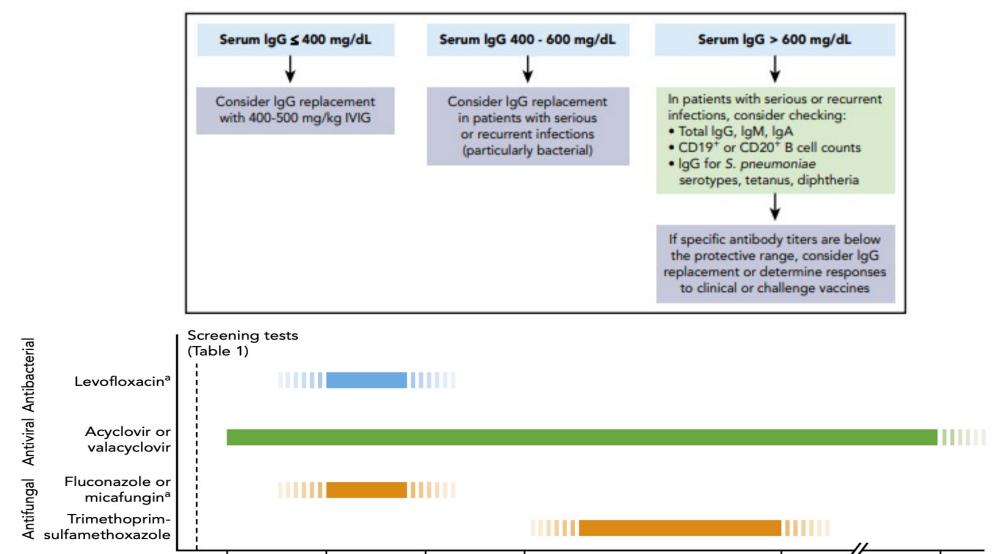
Wang, Blood Cancer Journal 2021

Day 90

Day 180

Day 14

Day 28


CAR-T cell

infusion

Day 365

and beyond

PROPOSED TIMELINE FOR ANTIMICROBIAL PROPHYLAXIS AND IMMUNOGLOBULINS REPLACEMENT

Day 21

Day 14

Hill & Seo, How I treat, Blood 2020

chemotherapy

Lymphodepletion CAR-T cell

infusion

Day 365

and beyond

Day 180

CONCLUSIONS

- Patients with triple-refractory multiple myeloma are generally fragile
- Acute toxicities are frequent and can rarely be fatal, therefore accurate patients selection in terms of age, fitness and comorbidities is warranted
- Long term cytopenias are poorly understood and often clinically challenging
- Triple-refractory multiple myeloma patients undergoing CAR T-cell therapies are exposed to high risk of infections, especially late viral or opportunistic infections:
 - Close monitoring, and aggressive screening/management of latent/symptomatic infections are recommended
 - Anti-infectious prophylaxis, Ivig replacement should be considered

Brudno JN, Kochenderfer JN. Blood. 2016;127(26):3321-3330. Brudno JN, Kochenderfer JN. Blood Rev. 2019:34;45-55 Lee DW et al. Biol Blood Marrow Transplant. 2019;25:625-638. Sterner RM et al, Blood 2020. Galli E et al. BMT 2020. Hill & Seo Blood 2020. Santomasso, ASCO Guidelines, JCO 2021

GRAZIE PER L'ATTENZIONE

